Dispersion and limit theorems for random walks associated with hypergeometric functions of type BC
نویسنده
چکیده
The spherical functions of the noncompact Grassmann manifolds Gp,q(F) = G/K over the (skew-)fields F = R,C,H with rank q ≥ 1 and dimension parameter p > q can be described as Heckman-Opdam hypergeometric functions of type BC, where the double coset space G//K is identified with the Weyl chamber C q ⊂ R q of type B. The corresponding product formulas and Harish-Chandra integral representations were recently written down by M. Rösler and the author in an explicit way such that both formulas can be extended analytically to all real parameters p ∈ [2q − 1,∞[, and that associated commutative convolution structures ∗p on C B q exist. In this paper we introduce moment functions and the dispersion of probability measures on C q depending on ∗p and study these functions with the aid of this generalized integral representation. Moreover, we derive strong laws of large numbers and central limit theorems for associated timehomogeneous random walks on (C q , ∗p) where the moment functions and the dispersion appear in order to determine drift vectors and covariance matrices of these limit laws explicitely. For integers p, all results have interpretations for G-invariant random walks on the Grassmannians G/K. Besides the BC-cases we also study the spaces GL(q,F)/U(q,F), which are related to Weyl chambers of type A, and for which corresponding results hold. For the rank-one-case q = 1, the results of this paper are well-known in the context of Jacobi-type hypergroups on [0,∞[.
منابع مشابه
Random Walks on Infinite Graphs and Groups — a Survey on Selected Topics
Contents 1. Introduction 2 2. Basic definitions and preliminaries 3 A. Adaptedness to the graph structure 4 B. Reversible Markov chains 4 C. Random walks on groups 5 D. Group-invariant random walks on graphs 6 E. Harmonic and superharmonic functions 6 3. Spectral radius, amenability and law of large numbers 6 A. Spectral radius, isoperimetric inequalities and growth 6 B. Law of large numbers 9 ...
متن کاملA Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کاملRandom Walks in Cones
We study the asymptotic behaviour of a multidimensional random walk in a general cone. We find the tail asymptotics for the exit time and prove integral and local limit theorems for a random walk conditioned to stay in a cone. The main step in the proof consists in constructing a positive harmonic function for our random walk under minimal moment restrictions on the increments. For the proof of...
متن کاملLimit theorems and absorption problems for quantum random walks in one dimension
In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by 2 × 2 unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.
متن کامل